

Complexities of Bartter Syndrome Type III: A Case Study in Jordan

Hamdah Hanifa ^{1,*†}, Yumna Al-Badareen ^{2,‡}, Malak Mbarak Al-Refaai ¹, Nafeaa M. Ganama ¹, Mohammad Sameeh Alabrash ³, Basil Alsaleh ⁴

¹Faculty of Medicine, University of Kalamoon, Al-Nabk, Syria

²Faculty of Medicine, Mutah University, Karak, Jordan

³Faculty of Dentistry, Al-Wataniya Private University, Hama, Syria

⁴Faculty of Medicine, Tbilisi State Medical University, Tbilisi, Georgia

*Corresponding author. Faculty of Medicine, University of Kalamoon, Al-Nabk, Syria. E-mail: hamdahhanifa@gmail.com

†The authors have contributed equally to this work and share co-first authorship.

Abstract

Bartter Syndrome (BS) is a genetic disorder affecting the renal tubules, leading to elevated levels of renin, angiotensin, and aldosterone, along with metabolic alkalosis, while maintaining normal blood pressure. It is also associated with laboratory abnormalities such as hypocalcemia, hypokalemia, hypomagnesemia, and hyponatremia, which may result in neurological complications including seizures and loss of consciousness. These findings necessitate consideration of important differential diagnoses such as Gitelman syndrome and cystic fibrosis, underscoring the importance of confirming the diagnosis of this serious condition, giving it appropriate attention, and initiating early treatment to prevent advanced complications. We report the case of a 36-year-old Jordanian male with a medical history of Bartter Syndrome and chronic kidney disease, who presented to the emergency department in a coma with generalized seizures due to severe electrolyte imbalances. His condition was further complicated by a genetic predisposition and a family history of Bartter Syndrome, with genetic testing confirming mutations in the CLCNKB gene. This rare case of Bartter Syndrome type III, in which the patient progressed to the stage of hemodialysis, illustrates the complexities of diagnosis and management, and emphasizes the importance of continuous care and regular follow-up.

Keywords: Bartter Syndrome; Chronic Kidney Disease; Loop of Henle; CLCNKB; Antenatal Bartter Syndrome; Classical Bartter Syndrome

Key Clinical Messages:

1. Despite the rarity of Bartter Syndrome (with an incidence of approximately 1 in 1,000,000 people), every possible diagnosis must be carefully considered by thoroughly investigating all accompanying symptoms in order to avoid potential complications.

2. Bartter Syndrome has a hereditary pattern of transmission, which was confirmed in our study by the presence of a family history between the patient and his brother. This highlights the importance of genetic testing, particularly through analysis of the CLCNKB gene, to confirm the diagnosis of Bartter Syndrome type III.

3. Due to the persistent loss of electrolytes such as potassium, calcium, and magnesium, patients are prone to neurological complications including seizures, in addition to other potential consequences. Therefore, urgent emergency intervention to correct electrolyte imbalances is essential and can be life-saving.

4. Finally, this case underscores the importance of multidisciplinary collaboration between specialties such as internal medicine, nephrology, nutrition, and nursing, in order to achieve

the best possible outcome for both the patient and the disease management.

Background

Bartter Syndrome (BS) was first discovered in 1962 by Bartter. It is an autosomal recessive disorder of the renal tubules characterized by a set of laboratory abnormalities, most notably elevated renin, angiotensin, and aldosterone levels, along with metabolic alkalosis and normal blood pressure [1]. The estimated prevalence of this syndrome is approximately 1 per million individuals [2]. Clinically, Bartter Syndrome is classified into classical Bartter Syndrome (cBS) and antenatal Bartter Syndrome (aBS) [3]. Accordingly, the symptoms and their severity vary depending on the affected age group; adults primarily suffer from polyuria and fatigue, while polyhydramnios and hypovolemia are the main symptoms in aBS [4]. To our knowledge, this study presents the first documented case in Jordan of Bartter Syndrome type III in an adult patient. The case involves a 36-year-old male who presented with generalized seizures and coma as a result of severe electrolyte imbalances. The complexity of managing such chronic

Received: April 7, 2025. Revised: October 7, 2025. Accepted: November 1, 2025

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

conditions, especially in the presence of concurrent kidney disease, is highlighted in this review.

Case Presentation

The patient is a 36-year-old Jordanian male who was diagnosed with Bartter Syndrome at the age of 26. He presented to the emergency department with generalized seizures and a state of coma, raising immediate concerns regarding significant electrolyte disturbances. His medical history is notable for chronic kidney disease (CKD) (see Figure 1), requiring regular dialysis for the past three years, with treatments conducted three times a week. The patient denied any smoking history and reported no prior instances of diabetes or hypertension. However, he had experienced episodes of elevated blood pressure during dialysis sessions, which typically normalized following treatment. In the days leading up to his emergency presentation, the patient reported a progressive decline in his health. He felt increasingly fatigued and dizzy, and he experienced episodes of palpitations and shortness of breath during exertion. Excessive sweating accompanied these symptoms, causing significant discomfort. Notably, he reported numbness and tingling in his extremities, indicative of possible hypocalcemia. Family history was significant, revealing that his younger brother had been diagnosed with Bartter Syndrome at just seven months of age, raising suspicions of a genetic predisposition in this case. Upon admission, initial laboratory investigations revealed severe electrolyte imbalances that warranted immediate attention. The serum potassium level was critically low at 2.1 mmol/L, and serum calcium was found to be 7.4 mg/dL, both of which are life-threatening. The serum magnesium level was 0.8 mg/dL and the albumin level was 40.2 g/L. The patient exhibited metabolic alkalosis, with a serum bicarbonate level recorded at 32 mmol/L. Renal function tests demonstrated significant impairment, with a creatinine level of 1000 μ mol/L, reflecting the severity of his underlying condition. Urine electrolyte analysis showed urinary potassium at 60 mmol/day and chloride at 70 mmol/day, consistent with renal potassium and chloride wasting typical of Bartter Syndrome (see Table 1). A renal ultrasound performed during the admission revealed no structural abnormalities, which helped to rule out obstructive causes for his renal impairment. Common secondary causes of CKD were excluded based on clinical history, imaging, and laboratory work-up. Given the patient's neurological and musculoskeletal symptoms, a magnetic resonance imaging (MRI) of the lumbar spine was performed (see Figure 2). In addition, due to the patient's family history and clinical findings, genetic testing was conducted. This revealed mutations in the **CLCNKB gene**, which encodes a chloride channel known as chloride channel, voltage-sensitive, KB type. This channel plays a crucial role in regulating the movement of chloride ions across the cell membrane in the kidneys, ensuring proper electrolyte balance. The CLCNKB gene is located on chromosome 1p36, and the resulting protein is identified as P51448. These findings confirmed the diagnosis of Bartter Syndrome Type 3. Management in the hospital was critically focused on correcting the significant electrolyte imbalances. Intravenous potassium and calcium supplementation were promptly initiated, effectively normalizing serum levels and resolving the patient's seizures, thereby preventing further neurological complications. Continuous dialysis was maintained to manage his fluid balance and blood pressure effectively.

Nutritional support played a vital role in his management; a diet rich in potassium and sodium was introduced to help compensate for ongoing renal losses.

Figure 1. Renal MRI. Bilateral renal atrophy with kidney size asymmetry, where one kidney is larger than the other, indicates chronic kidney disease. This is likely a consequence of long-standing electrolyte imbalances associated with Bartter Syndrome.

Figure 2. Lumbar spine MRI. As seen in the axial and sagittal views, the MRI demonstrates degenerative changes in the lumbar spine, including intervertebral disc desiccation and mild disc protrusions at **L4-L5 and L5-S1**. There is no evidence of significant spinal cord compression.

Patient education was integral to his management plan. The patient was followed regularly for **eight months** post-discharge, with continued dialysis and supportive care. He showed marked clinical improvement with no recurrence of seizures or electrolyte imbalance. Renal parameters remained stable, and no additional complications were recorded. This favorable response underscores the effectiveness of the multidisciplinary management plan and the importance of regular follow-up.

Discussion

In a previously published paper, after reviewing cases reported between April 2012 and April 2022, a total of 118 patients diagnosed with Bartter syndrome were analyzed. These cases were distributed across 48 case reports and 9 case series, comprising a total of 70 patients. The results showed that the

Table 1. Summary of laboratory results and reference ranges in our patient with Bartter Syndrome type III upon admission.

Test	Patient's Value	Reference Range
Serum Potassium	2.1 mmol/L	3.5–5.0 mmol/L
Serum Calcium	7.4 mg/dL	8.5–10.2 mg/dL
Serum Magnesium	0.8 mg/dL	1.7–2.3 mg/dL
Serum Albumin	40.2 g/L	34–55 g/L
Serum Bicarbonate	32 mmol/L	22–28 mmol/L
Serum Creatinine	1000 μ mol/L	53–106 μ mol/L
Urinary Potassium	60 mmol/day	25–100 mmol/day
Urinary Chloride	70 mmol/day	110–250 mmol/day

Table 2. Summary of clinical and genetic characteristics of different types of Bartter Syndrome from medical literature.

Case Number	Patient Age	Patient Gender	Primary Diagnosis	Responsible Gene	Main Electrolyte Abnormalities	Treatment	Reference
1	21 months	Male	Bartter Syndrome Type I	SLC12A1	Hypokalemia, Hypercalcioria	Indomethacin	[18]
2	26 years	Male	Bartter Syndrome Type II	KCNJ1	Hypokalemia	Potassium supplement, Aldosterone antagonist	[19]
3	22 years	Female	Bartter Syndrome Type III	CLCNKA	Hypokalemia	No specific treatment mentioned	[20]
4	Fetal (preterm, birth at 33 weeks)	Female	Bartter Syndrome Type IVa	BSND	Elevated amniotic fluid chloride levels, polyuria	Indomethacin, nasogastric feeds, intravenous fluids	[21]
5	Newborn	Male	Bartter Syndrome Type V	MAGED2	Hyponatremia, Hypokalemia, Hypochloremia, Hypercalcioria	Parenteral nutrition, KCl, Spironolactone	[22]

majority of patients were male (68), while 50 were female. Additionally, 21 patients were born to consanguineous parents. Regarding geographical distribution, most cases were reported from Asia (73.72%), followed by Europe (15.25%), with the remaining cases originating from other regions worldwide [5].

Defective salt reabsorption in the thick ascending limb (TAL) of the loop of Henle (LOH) leads to Bartter Syndrome (BS). BS is associated with mutations in LOH, causing disturbances in vital laboratory values like hypocalcemia, hypokalemia, hypomagnesemia, and hyponatremia [6]. A previous study suggested that prostaglandins E2 play a crucial role in affecting and causing chloride transport defects in the TAL of Henle [7]. BS has various differential diagnoses including Gitelman syndrome, cystic fibrosis, diuretic abuse, and pyloric stenosis [8]. BS is classified into antenatal Bartter Syndrome (aBS) and classic Bartter Syndrome (CBS), with various patterns, each having specific age groups, symptoms, severity, and characteristics. For instance, aBS involves several symptoms around birth such as polyhydramnios, intrauterine growth retardation, prematurity, and fetal polyuria. The genes affected by aBS are diverse, with SLC12A1 (type I), KCNJ1 (type II), and BSND (type IVa), while CLCNKA and CLCNKB are responsible for type IVb. Type IV is closely associated with hearing loss in patients with this syndrome [9]. Recently, mutations in MAGED2 were also identified, causing a new type of BS known as transient antenatal Bartter Syndrome linked to the X chromosome [10] (see Table 2). Type III, considered the most

common BS according to several studies. A previous study on 54 Korean patients confirmed this, aligning with studies from the UK and Japan but differing from others in Germany and France, indicating the need for more research as the prevalence of genetic mutations can vary by country [11]. Mutations in the CLCNKB gene responsible for encoding ClC_kb contribute to the emergence of type III syndrome and its symptoms in adults, as seen in our patient [12]. Although BS patients rarely reach dialysis stage, our patient required regular dialysis due to a history of CKD concurrent with BS. The presence of hyperplasia in the juxtaglomerular apparatus can be present or absent, indicating that kidney biopsy does not play a significant role in diagnosing BS [13]. On the other hand, Liu et al. documented a case of a Chinese boy diagnosed with both BS and CKD, whose kidney biopsy revealed complex juxtaglomerular apparatus hyperplasia [12]. Unlike the referenced case, in a previous study, the infant girl did not progress to dialysis, and no hyperplasia was observed. This indicates that the severity of Bartter Syndrome and its progression to CKD can vary between cases, and that reaching the stage of dialysis is not common in all patients [14]. BS treatment aims to reduce aldosterone and prostaglandin production as much as possible. Additionally, treatment should include potassium supplements to avoid dehydration and hypovolemia, especially in younger patients, with aldosterone antagonists and potassium-sparing diuretics like spironolactone. In Zhou et al.'s report, a few-days-old female patient was treated with blue light to reduce

jaundice and followed up for 22 months with indomethacin and potassium chloride supplements for type III BS diagnosed since the early days of life [15]. Nephrologists and researchers recommend regular follow-up for patients every 6-12 months during adulthood and every 3-6 months in infancy and childhood, along with regular kidney ultrasounds every 12-24 months [16]. For end-stage renal disease (ESRD) patients, particularly those with BS, a kidney transplant is the final solution, with no recurrence of BS after the procedure, as reported by Lee et al. [17]. In our case, our treatment plan for our patient included intravenous potassium and calcium replacement, in addition to nutritional support rich in potassium and sodium, along with educating him about his disease and its long-term consequences and complications.

The limitations of our study were that it described only a single case, which limits the ability to generalize the findings. In addition, the follow-up period was relatively short, and no kidney biopsy or functional studies of the mutations detected in the CLCNKB gene were performed. Furthermore, the report did not adequately address the nutritional and psychosocial aspects in the long term.

In conclusion, this rare case highlights the diagnostic and therapeutic challenges of Bartter Syndrome, particularly type III. The patient showed a good response to continuous treatment and regular follow-up, reflecting the importance of comprehensive medical care. This case underscores the need for further studies to understand the diversity of genetic mutations and their impact on clinical expression. Psychological and social support for patients is essential to improve their long-term quality of life. Collaboration between doctors and researchers should continue to find new and effective ways to treat this rare syndrome.

Authors' contributions

H.H., Y.A., M.M.A., N.M.G., M.S.A., and B.A., wrote the main manuscript text. Dr. Hamdah Hanifa conceived and supervised the conduct of the study. All authors critically reviewed and revised the manuscript.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

No datasets were generated or analysed during the current study.

Competing interests

The authors declare no competing interests.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Ethics approval and consent to participate

Not applicable.

References

- Piao Y, Chen C, Wu D, Liu M, Li W, Chen J, Sang Y. Clinical, genetic characteristics and outcome of four Chinese patients with Bartter syndrome type 3: Further insight into a genotype-phenotype correlation. *Mol Genet Metab Reports*. 2024;40:101112. Available from: <https://www.sciencedirect.com/science/article/pii/S221442692400065X>, <https://doi.org/10.1016/j.ymgmr.2024.101112>.
- Mali LP, Meena SS, Baniwal M. Classical Bartter syndrome – A case report. *Indian J Med Spec*. 2015;6:116–8. Available from: <https://www.sciencedirect.com/science/article/pii/S0976288415000570>, <https://doi.org/10.1016/j.injms.2015.06.004>.
- Zhu B, Jiang H, Cao M, Zhao X, Jiang H. A novel CLCNKB mutation in a Chinese girl with classic Bartter syndrome: a case report. *BMC Med Genet*. 2019;20:137. <https://doi.org/10.1186/s12881-019-0869-9>.
- Alla D, Kesineni MK, Vempati R, Patel H, Menezes S, Alla SSM, Patel D, Gupta S, Patel K, Pradeep A. A Rare Presentation of Adult-Onset Bartter Syndrome: A Case Report. Vol. 15, Cureus. United States; 2023. p. e36120, <https://doi.org/10.7759/cureus.36120>.
- Qasba RK, Bucharles ACF, Piccoli MVF, Sharma P, Banga A, Kamaraj B, Nawaz FA, Kumar HJ, Happy MA, Qasba RK, Kogilathota Jagirdhar GS, Essar MY, Garg P, Reddy ST, Rama K, Surani S, Kashyap R. Bartter Syndrome: A Systematic Review of Case Reports and Case Series. *Medicina (Kaunas)*. 2023 Sep;59. <https://doi.org/10.3390/medicina59091638>.
- Dalugama C, Pathirage M, Kularatne SAM. Bartter syndrome-like phenotype in a patient with diabetes: a case report. *J Med Case Rep*. 2018;12:222. <https://doi.org/10.1186/s13256-018-1752-6>.
- Stokes JB. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. Selective inhibitions of the medullary portion. *J Clin Invest*. 1979;64:495–502, <https://doi.org/10.1172/JCI109487>.
- Bokhari SRA, Zulfiqar H, Mansur A. Bartter Syndrome. In *Treasure Island (FL)*; 2025.
- Hanifa H, Ataya J, Abu-Naja M. et al. Bartter syndrome in a female infant: A rare case report from Syria. *SAGE open medical case reports. England* 2024;12:p. 2050313X241233117. <https://doi.org/10.1177/2050313X241233117>.
- Laghmani K, Beck BB, Yang SS. et al. Polyhydramnios, Transient Antenatal Bartter's Syndrome, and MAGED2 Mutations. *N Engl J Med*. 2016 May;374:1853–63. <https://doi.org/10.1056/NEJMoa1507629>.
- Choi N, Kim SH, Bae EH. et al. Long-term outcome of Bartter syndrome in 54 patients: A multicenter study in Korea. *Front Med*. 2023;10:1099840. <https://doi.org/10.3389/fmed.2023.1099840>.
- Liu J, Zhang Y, Wu X. et al. Bartter syndrome type III with glomerular dysplasia and chronic kidney disease: A case report. *Front Pediatr*. 2023;11:11. Available from: <https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2023.1169486>.
- Hamsho S, Alhussen AHD, Alabdullah H, Sleiay B, Kasem N, Hassan Q. Hypokalemia in a young man...think Bartter syndrome type 3. *Ann Med Surg*. 2024;86:3636–3640. Available from: https://journals.lww.com/annals-of-medicine-and-surgery/full-text/2024/06000/hypokalemia_in_a_young_man_think_bartter_syndrome.63.aspx, <https://doi.org/10.1097/MS9.0000000000001994>.

14. Wu X, Yang G, Chen S, Tang M, Jian S, Chen F, Wu X. Bartter syndrome with long-term follow-up: a case report. *J Int Med Res*. 2020;48:300060520947876. <https://doi.org/10.1177/0300060520947876>.
15. Zhou L, Chen X, Xiong J, et al. A mosaic mutation in the CLCNKB gene causing Bartter syndrome: A case report. *Front Pediatr*. 2023;11:11. Available from: <https://www.frontiersin.org/journals/pediatrics/articles/10.3389/fped.2023.1034923>.
16. Choi N, Kang HG. Bartter Syndrome: Perspectives of a Pediatric Nephrologist. *Electrolyte Blood Press*. 2022 Dec;20:49–56. <https://doi.org/10.5049/EBP.2022.20.2.49>.
17. Lee SE, Han KH, Jung YH, Lee HK, Kang HG, Moon KC, Ha IS, Choi Y, Cheong HI. Renal transplantation in a patient with Bartter syndrome and glomerulosclerosis. *Korean J Pediatr*. 2011;54:36–9. <https://doi.org/10.3345/kjp.2011.54.1.36>.
18. Lee EH, Heo JS, Lee HK, Han KH, Kang HG, Ha IS, Choi Y, Cheong HI. A case of Bartter syndrome type I with atypical presentations. *Korean J Pediatr*. 2010;53:809–13. <https://doi.org/10.3345/kjp.2010.53.8.809>.
19. Elfert KA, Geller DS, Nelson-Williams C, et al. Late-Onset Bartter Syndrome Type II Due to a Homozygous Mutation in KCNJ1 Gene: A Case Report and Literature Review. *Am J Case Rep*. 2020;21:e924527. <https://doi.org/10.12659/AJCR.924527>.
20. Cha EJ, Hwang WM, Yun SR, Park MH. An Adult Case of Bartter Syndrome Type III Presenting with Proteinuria. *J Pathol Transl Med*. 2016;50:160–4. <https://doi.org/10.4132/jptm.2015.08.31>.
21. Shajan AM, Kumar M, Navaneethan P, Danda S, Beck MM. An Unusual Case of BSND Gene-Related (Type IV) Bartter Syndrome Presenting as Antenatal Bartter Syndrome: A Case Report and Review of Literature. *Matern Med*. 2023;5:128–130. Available from: https://journals.lww.com/mfm/fulltext/2023/04000/an_unusual_case_of_bsnd_gene_related_type_iv_12.aspx, <https://doi.org/10.1097/FM9.0000000000000182>.
22. Ma M, Zhang M, Zhou Y, Yao F, Wei M, Li Z, Qiu Z. A novel MAGED2 variant in a Chinese preterm newborn with transient antenatal Bartter's syndrome with 4 years follow-up. *BMC Nephrol*. 2021;22:1–4. <https://doi.org/10.1186/s12882-021-02553-1>.